MACHINE LEARNING FUNDAMENTALS
Course Content
Basic (1-10)
-
1 overview
05:02 -
2 data types
03:10 -
3 mean
07:09 -
4 mode & median
17:06 -
5 standard deviation
06:45 -
6 variance
08:59 -
7 percentile
09:14 -
8 Data Distribution
13:18 -
9 normal data distribution
07:55 -
10 scatter plot
14:04
Linear Regression (11-12)
Polynomial Regression (13-16)
Multiple Regression (17-20)
Train / Test (21-24)
Install scikit-learn documentation (พิเศษสำหรับคนที่จะใช้ IDLE)
Decision Tree (25-30)
Confusion Matrix (31-34)
Hirarchical Clustering (35-40)
Logistic Regression (41-43)
Grid Search (44-47)
Categorical Data (48-50)
K – means (51-52)
Bootstrap Aggregatioin
Cross Validation
AUC – ROC Curve
K-nearest neighbors
Print Certificate
Student Ratings & Reviews
No Review Yet